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In this paper we propose a new parallelization of the Davidson algorithm adapted
for many eigenvalues. In our parallelization we use a relationship between two con-
secutive subspaces which allows us to calculate eigenvalues in the subspace through
an arrowhead matrix. Theoretical timing estimates for the parallel algorithm are de-
veloped and compared against our numerical results on the Paragon. Finally our
algorithm is compared against another recent parallel algorithm for multiple eigen-
values, but based on Arnoldi: PARPACKg) 1998 Academic Press

1. INTRODUCTION

Many iterative methods for eigenvalue problems proceed in a similar way to ob
a solution for the eigenproblelAu=Au. They construct an orthonormal basfsand
approximate the exact eigenvectoby a vectory in the subspace spanned %y[33]. In
other words the original problem is projected onto the subspace which reduces the prc
to a smaller eigenproblet®y = iy, whereS,= VT AV. Then the eigenpait., y) can be
obtained with much less computational effort. The approximated eigenvetonapped
back to the eigenvector of the original problemuas V'y.

The Arnoldi algorithm starts from a given vector=x;/||X1|| and successively gen-
erates orthogonal bas€ for Krylov subspace& (A, v1) =sparfvy, Avg, ..., A1y}
For a general matrix the projected matfxis a Hessenberg matrix. For a symmetric matri
the projected matrix is a tridiagonal matrix and the Arnoldi algorithm is equivalent to
Lanczos algorithm [17]. On the other hand, Davidson-type methods build an orthono
basis{vy, vy, ..., vk} depending on the initial vectos, the matrixA, and a preconditioner
M, . Specifically, the preconditiond\; is applied to the current residual,= Auk — Ui,
and the preconditioned residugk= M, ry is orthonormalized against the previous columr
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of Vk =[v1, v, ..., v¢]. The new orthonormal basi 1 = [k, vky1] defines the new pro-
jected matrixS<+1=Vk11AVk+1 and the process is repeated iteratively. In this paper w
present a parallel algorithm for Davidson-type methods.

Recently, the Generalized Davidson (GD) algorithm has been modified to calculate s
eral eigenvalues [30]. We use restarts as suggested in [10, 27] since it keeps the si.
the subspace small, while preserving important information from previous iterations. T
means that the cost of an iteration is kept small, hopefully without significantly increasi
the number of iterations, and making the overall algorithm more efficient.

Some previous implementations for the Davidson algorithm solve the eigenvalue prob
in subspacé& by using algorithms for dense matrices: early works [8, 39] adopt EISPAC
[34] routines or faster implementations of Householder QR [9]. Later implementatio
[36, 37] use LAPACK [1].

Partial parallelization is obtained by addressing the matrix-vector operations and sp
format storage for matriA [36, 35, 37]. The parallelization of [35] aims the reduction
of synchronization needed by inner products and has fine granularity. In this paper
present a relationship between two successive subspdcgesafdS,) which allows us to
calculate the eigenvalues in the subsp§céhrough an arrowhead matrix representation
The arrowhead structure is extremely sparse and the associated eigenvalue problen
be solved in a highly parallel way. We address the data storage for distributed menr
architectures. Matrices are partitioned along distinct processors so that the final distribu
is well balanced and most of the computational work can be performed in place.

In this paper, we present and compare the Davidson for Several Eigenvalues (D
algorithm in two different parallel architectures: the nCUBE and the Paragon. The wo
processorand nodeare used interchangeably. To achieve portability we used MPI, ar
level-2 and level-3 BLAS whenever possible, in our implementations. Theoretical timil
estimates for the new parallel algorithms are developed and compared against our nume
results. Much of the parallel techniques can be used for parallelization of GD in additi
of the parallelization of the new variant: DSE.

The remainder of the paper is as follows. In Section 2 we present the DSE algorithm
Section 3 we design parallel steps for DSE. In Section 4 we develop timings bounds
the parallel algorithm. In Section 5 we show numerical results and finally in Section 6 \
present our conclusions.

2. DAVIDSON FOR SEVERAL EIGENVALUES

Although in the original formulatio, is the diagonal matrixdiag(A) — A1)~1) [10],
GD algorithms adopt different operators fds, . For example in [30], a multigrid precondi-
tioner was used. The Davidson for Several Eigenvalues (DSE) algorithm is a new versio
GD, adapted for calculating several eigenvalues [30], and implemented in a restarted r
ner along the lines of [7]. A nice review of iterative methods for finding a few eigenvalu
of large matrices is given in [11]. DSE computes the fpstigenpairs ofA in order, and
uses implicit restarts to limit the increasing computational work from successive Varger
and S subspaces. The DSE algorithm is given as

ALGORITHM 1. Restarted Davidson for Several Eigenval(i@SE). Given a symmetric
matrix A, an initial vectorx;, number of eigenpairg, restartindexj, minimal dimensiorm
for the projected matris (m > p), and convergence toleraneecompute approximations
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A andu for the p smallest eigenpairs dA.

1. Setvy < X1/|Xa]l2- (initial guess)
2. V]_ < [v]_].
3. S« []; dmS<« 0, Wy «[]; k=1,
4. Forj=1,..., pdo (approximation fofj th eigenpair)
Whilek=1 or|re_1|| <e do
() wx < Auvg
(b) Wi <= [Wk-1, wi]
(c) ComputeV,] wyx and make it the last column and row
of S =V, AWk. Update dinS < dimS+ 1.
(d) If (m+ q) <dim S(restartS)
ComputeS = YkAkYkT, the complete symmetric
eigendecomposition d&, whereAy is a diagonal
matrix with its entries ordered in increasing order.
ReduceS < (Ak)mxm) to itsm smaller eigenvectors,
and updat&/, andW. Update dinmS <— m.
(e) Compute théth smallest eigenpaixk, yk of S, where
| = min(dims, j).
(f) uk < Vi Yk
(9) rk < Aug — AU = Wik — Ak Vi Y. (residual)
(h) If |Irkll2 < € then exit inner loop.
(i) t« < Mry. (preconditioning)
(J) vkr1 < Mgk, t). (apply modified Gram Schmidt)
(K) Vis1 <[ Vi, vkga]-
End while
End do
5. Stop.

In the original Davidson algorithm the initial guess is a set of unit vectors corresponc
to p diagonal elements (which is a good choice for finding théiggest or smallest
eigenvalues of a diagonally dominant matrix). In our new version (DSE), we were
necessarily treating diagonally dominant matrices. This makes the choice of the in
guesses for the eigenvectors harder. For simplicity our initial guess is a vector whic
generated randomly. The best random vector choice has independent components
from a normal distribution. In contrast, the original Davidson algorithm is deterministic |
more susceptible to hidden symmetries in the matrices. Another aspect of our algorith
that, when coupled with a multigrid or ADI preconditioner, it is often able to identify tt
multiplicity of multiple eigenvalues. More numerical results about the behavior of the D
algorithm are shown in [4, 30].

In the next section we detail the parallel steps of the DSE algorithm: data distributi
parallel orthonormalization, parallel calculation of eigenvalues on subshaard parallel
implicit restarting; these parallel steps appear in any variation of GD. In addition to
Diagonal precondioner we will present numerical results with Multigrid and ADI precc
ditioners. In this paper we do not intend to address parallelization issues of the multil
or ADI preconditioners: For multigrid preconditioners several implementations are av
able in the literature [3, 16, 25]. The same is true about the parallelization of the /
preconditioner [13, 21, 24].



730 BORGES AND OLIVEIRA

3. PARALLEL STEPS OF DSE

A parallel implementation for the restarted Davidson for several eigenvalues (DS
should exploit the data parallelism inherent in the algorithm. A message-passing ct
puter allows good scalability. If different workloads must be managed, as happens in
arrowhead matrix eigenvalue calculation (steg, a particular processor can be selectec
to coordinate the task.

3.1. Data Representation and Distribution

Data storage is animportant aspect when parallelizing the algorithm described above.
trices are partitioned along distinct processors so that the program exploits all the best
sible data parallelism. At each iteration, a new veeoids added to the basisy, . . ., vk_1}.
This is reflected by the addition of a new column to matriégeandW (stepst.b and4.k).
This makes row-wise storage the best partitioning scheme, since those matrices always
a constant number of rows and the use of restarts keeps a bound on the number of colu
this way data distribution is uniform among the processors for these matrices. Moreo
computations such as matrix-vector multiplies and modified Gram Schmidt orthogor
ization can be performed in place. In the following description a subscript stands for
iteration number in DSE (Algorithm 1), and superscripts indicate which processor alloca
the data. LetA be a matrix of orden andN be the number of processors available. Matrix
A can be split into row block#\',i = 1, ..., N, each one containing[n/N7 rows of A.

For simplicity we will assume that is a multiple ofN:

Al
A2
A= .

AN
Thus processdr i =1, ..., N, storesAl, theith row block of A. MatricesV andW are
stored in the same fashion

s wit
Vo= | and W= | :

Figure 1 illustrates the data allocation. This implies f##at= v; must be initialized in the
same way; that is, the first/N rows ofv; (namedv?) are stored in processor 1, thi
row-block of vl(vil) is stored in processar, and so on. In the following discussion we
present the parallelization steps of the DSE algorithm when adopting the just descri
data structure, in a MIMD architecture.

Even though at first glance we may thimk= Av cannot be computed in place, this
can be overcome by sending vecigrto all processors so that each one computes it
respective slice ok, namelyw}, = Alvx. Thus matrix\{; can be updated in processas
W = [We, wi].

Residual computations (stepd, 4.g,and4.h) are also performed in placg: = W, yi —
AV yk. Specifically, vectory is broadcast to all processors; each processor computes
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FIG. 1. Matrices are distributed row-wise through the processors.

slice ofry and obtains the partial valusz(ug. The residual vectar, can be evaluated by
concatenating the slices

and the respective norm is given i[> = (31 [IrL113)Y2.

3.2. Parallel Orthonormalization(Steps4.j and4.k)

Stepsd.j and4.k correspond to applying the column versiafimodified Gram—Schmidt
(mgs) to the extended matri¥/|, tc]. The data distribution implies that the mgs algorithn
will be implemented with a row-wise partitioning scheme similar to the one of [29]. In t
mgs algorithm we do not have significant loss of orthogonality; thus only the new colu
tk needs to be modified since the current bakibas been previously obtained by the mg
algorithm in previous iteration steps. Summariziigs orthonormalized in relation to the
current basid/ by

Forj = 1todimV

Cj < (vj, &) )

t <t — Cjv;

Ukt < b/ |Itll

Figure 2 represents data distribution améhgrocessors for stegsj and4.k.. Each pro-
cessoil computes the partial inner produds= (v}, ), j =1, ..., dim Vi, wherev} and
t, represent the rows of andt stored in processar respectively. The partial resuttsare
added in dostprocessor to evaluate the coefficiept= SN c‘j which is then broadcasted
and used to perform the related projection on each procdgset,L -G vj,i=1...,N.
The new columny,  is obtained by the normalization &f, v, ; =t /It

1 The reader should not confuse the implementation of mgs (in this case column version and is determin
the ordering of loops in the mgs algorithm) with the storage scheme chosen: row-wise.
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FIG. 2. Data distribution for the modified Gram—Schmidt algorithm.

The orthonormalization process is accomplished u@mﬁ) broadcast-type communi-
cations where& = dim S, the number of columns fov at iterationk, which depends on
the restart indexeg andm in the DSE algorithm. Notice that a column-wise storage migh
have a smaller upper bound included for its communication time: groups of consecu
columnsv; would be stored in the same processor and the new cotuimmadcasted to
all processors so that the coefficienjsin the code loop (1) would be performed locally.
Thus, the resulting communication time should®€éN) point-to-point communications.
However, those coefficients must be evaluatedrder to guarantee the stability provided
by the modified Gram—-Schmidt algorithm. So a column-wise implementation would res
in a sequential algorithm: only one processor at time would be calculetinithe parallel
implementation of the mgs presented here differs from the pipelined algorithm of [2
partially because mgs does not implement the outer loop of the full version of the modif
Gram—Schmidt algorithm. The Davidson algorithm itself implicitly supplies the outer loc
of modified Gram—-Schmidt since each iteration creates atgpevhich is orthogonalized
against the previous basis vectors.

3.3. Parallel Calculation of Eigenvalues of $Step4.e

Since the complete eigendecompositionS=V,] AVx must be found for everx,
the solution method used for the eigenprobl&gy, = Ak is important. Although the
eigenvalues calculation in the subspac@i&®) and the MGS step cost @8(kn), if O(k?)
approaches, the eigenvalue calculation 8f is a significant step of the Davidson algorithm.
Restarts can keep small and also avoid this problem. It should be noted however th
the constant irO(k®) may be large. The relationship betweSnand Sc_; [30] provides
an alternative way to parallelize this step. [t 1 =Yk_1Ak_1YkT_l be the orthonormal
decomposition of the symmetric matr$_;. Notice that

S = Vit ol T AlVi 1. ] = {S;K# ;‘J @

wheres = v] wx andsc= V! ; Avg = VT . Let

:YI<T—103<Yk—10:
0 1 0 1

~ Ak-1 Y
S . - (3)
S Yk—1 Sk
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We can see that matri& is similar to matrixS and is in the form of an arrowhead matrix

& — [Akl §k:| ’

5 s«

wheresy is the column vectoY,llsk. Thus, the eigenvalues & can be obtained by evalu-
ating the eigenvalues of the arrowhead ma&ixGiven the orthogonal eigendecompositior
of &

S = QuAkQy 4)

identity (3) is equivalent to

Y1 0]z [Yo, O
s=[5 s Y

SinceS is symmetric it also has an orthonormal decomposiBioa: YkAkYkT ; the previous
equation establishes the recursive relation

Y = [Ykol (1)] Qx, %)

for the eigenvectors di. Given the eigenvaluesy_, and eigenvectorg,_; of S_;, after
using (3) for construction dd, decomposition (4) can be used to find the eigenvahend
respective eigenvectorg of S by (5). Oliveria improved the parallelization of eigenvalue
algorithms for arrowhead matrices [31]. Here we choose to use the O’Leary and Ste
algorithm presented in [28]. Their algorithm is for symmetric arrowhead matrices and
be applied to findAx and Qx with O(k?) computational effort. Consider the following
representation fo§,

dq 0 o ... 0 $c(1)
0 d, o - 0 $(2)
. 0 0 dz - 0 $«(3)
S = : : : .. : : ) (6)
0 0 0 - dia  &k-1D
&1 %@ B - &(k-1 Skk

wherek stands for the order & and thed; are the eigenvalueg of Ay_1, or, eigenvalues
of Sc_1. Assume all reducibfeeigenvalues} have already been removed frd

The interlacing theorem [32] (or bracketing theorem for quantum chemists) is the b
for the method. This theorem has roots which go back to [2] and more recently has bec
known as Cauchy’s interlacing theorem; it states thatif ; has its entries ordered in
increasing orded; <d, < --- <di_q, thenthe sequence of diagonal elements in (6) defin
asetofinterval§(d;_1,d;): j=1,..., E} each one containing one and only one eigenvalt
of &, unlessd; 3 =d;. Numerically,d;_; andd; are considered to be equal if their relative

2 For a reducible eigenvaluk we haves, (i) = 0. In other words, the corresponding eigenvector is theinit
vector.
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difference is less than machine epsilon«20-6 for IEEE double precision). Boundat
andd are derived from Gershgorin’s localization theorem [22]:

k-1
do = min{dl — 18I, ..., dk_g — 15K = DI, sk — Z |§k(i)|},

i=1

k—1
o = mm{dl +18I. ... Gy + I8k = DI Sac+ Y |§k<i)|}.

i=1

If dj_1 < d; then the associated eigenvaluesatisfiesd;_; < 1j < d; and can be found as
a root of detS, — A1) =0. Sinced; — 1 £0, j =0, ..., k, for any eigenvalue: of §, the
jth entry in the last row of§, can be eliminated by using the diagonal valdes- 1 as
pivot elements. That is, Gaussian elimination is applied on the last r&u @he resulting
matrix is

-2 0 - &®D
0 kT @) ™
0 0 0 ¢k
where
1 | 2
() = Sa— Z[sk( ) (8

1=1

Consequently, condition d&k — A1) = 0 is equivalent to have the determinant of (7) equa
to zero, anch is an eigenvalue o, iff ¢(1) =0. A root-finding method can be applied to

evaluater; and the associated eigenvea@e= (q; (1), ..., ; k)T, where
SO g ke
q]'(|)= )\j—d| B (9)
1, | =k

Notice that if a diagonal entry is already close to an actual eigenvaly¢hen the norm of
the associated terf (1) may be small so that some terms in Eq. (9) may generate significe
roundoff errors. We address this problem in the Appendix of this paper.

Repeated valuedj_1 <dj = --- =d;j, <dj;,+1 indicate multiplicity. for the eigen-
valued; ;. In this case, th@w associated eigenvectayg,i, i =1, ..., u are obtained by
0, I=1...,j-1
§k(|)§k(j +1) . L.
— — , l=j,....j+i—-1
Aj+i () =q &2+ +&(j+i—-12 : : (10)
1, | =j+i _
0, l=j+i+1...,k

Eigenvalues are grouped by increasing order soAhatill define a new ordered set of
intervals{(dj_1, dj)} in the next iteration. Moreover, théh eigenpair(ik, i) of S can be
retrieved fromA andYk, as required in the DSE algorithm.
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The arrowhead algorithm of [29] for decompositiSp= QxAkQ] is highly paralleliz-
able. Distinct eigenvalues can be processed simultaneously. In this case, a unit of
consists of computing the eigenvalugand related eigenvector(§);1,i =1, ..., u, re-
siding in the given interva(dj_1, dj). Notice that different intervals may generate dis
tinct amounts of work due to different steps for calculation of rootsp©f), and if
dj_2» <dj_1=dj <dj41, Aj =d; and the root-finding algorithm does not even need to |
applied. Thus, it is difficult to predict the amount of work performed by each processor.
efficient synchronization among these concurrent computations must resolve the sch
ing problem [19]. A particular processor is selected d®stto coordinate the work. It
removes the set = {i :d; is reduciblé of reducible eigenpairs from matri% and be-
gins by sending one or a group of intervals;_1, dj): j € J} from the irreducible set
J={1,..., k=dim S} — | to the processors. Results are sent back to the host, indicat
that the respective processor is ready to receive another group of intervals. Simultane«
the host groups all eigenvalugs i €1, andx;, j € J, in the vectorA, and respective
eigenvectors} andq; as columns ofy.

Recall from Eq. (2) tha& is obtained by adding. = V|| ;wy as a new row and column
for Sc_1. Moreover, each processor computes locally its respective slicgagw; = Al vy.
This data distribution allows the host to obtainas a sum of partial terms, = (V)T wj,
which can be computed simultaneously. In other wosgds; ZiNzl oy is given by

w

S =

z] ) )T )] |

wy

In practice, the matriX§ will not be stored: only a vector faky, and a matrix foryy are
required from one iteration to the next.

The recursive relation (5) for calculation of eigenvectors is based on the updatipgtof
each iteration and can also be performed in parallel. We rewrite the eigenvectors calcu
from decompositiorfsk = QkAx QI as

Q= lQTk] , (12)
Ok

whereq,/ is the last row ofQyx. Under this notation, the new set of eigenvectéran
be obtained by computingy = Yix_1 Oy (which adds one more column int_1), and by
appending the new rogy into matrix Y. At first look, this update could be performed a
the host after gathering the individual eigenvectors (columndQffrom the processors.
Further insight reveals that the update (5) can be performed in a distributed way, prov
that each processor contains a copyYpf;: as soon as a given processor obtains a ne
eigenvectorg of S (i.e., a column ofQ,), it uses the splittingj =[§", q]™ similarly to
(11), so that the corresponding columnYgfis given byy =[(Yx_16)", q]". After that, the
processors send the new column¥pback to the host, instead of a column@f.

Notice that each processor contains a copy of mafrixt may look redundant, however,
this data structure allows the parallelization for update (5) as described above. More
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restarting imposes an upper-bound for the size of mafrixmdependent of the number of
iterations. It guarantees a modest storage requiremenit.forthe remaining sections of this
paper, we will be addressing the implementations of DSE which maintains a copyof
each processor. Combining the above considerations we obtain

ALGORITHM 2. Parallel Arrowhead-DecompositiorGiven the previous set of eigen-
valuesA_; and the new rovg for S, compute the new set of eigenpaitg and Yk.

L Ak <[] Qe <[l
2. ComputeSy < (Yy) s
3.d <« Ax_1.
4. Remove all reducible eigenvalues@and compute multiplicity
for the remaining intervalgd; _4, d;) ond.
5. Broadcastl, §¢ ands.
6. Dispatch a interval (or a group) to each node.
7. host:
While there are eigenpairs to be received back
Receive a eigenpair (or a group) from any node
If there is a interval (or group) to be sent
Send it to node.
else
Nodei is done.
Add the new eigenpair (or group) o, andYk.
other nodes:
While node is not done
Receive a interval (or group) from host.
Compute the eigenpair (or group).
Compute update (5) for the new eigenvector(s).
Send the associated eigenpair (or group) to the host.
8. Broadcast.
9. Stop.

If norestarting is applied or if alarge number of eigenvalues is desired, the dimensjon o
will increase considerably. Then, storage may turn out to be a dominant issue. To overci
this problem, we would scattef; throughout the processors. Mativk can be partitioned
by rows, as weré&/, andW, but in a wraparound manner: since it is a square matrix th:
increases after each iteration, a row-wise cyclic striping may be applied to provide a v
balanced distribution of data between processors. Thus, the hatrix Y; will be stored
in processor 1; in the next iteration, it will be updated asxaZmatrix Y, which will be
stored in processors 1 and 2, and so on. Figure 3 shows a general situatiojudemetes
the rows ofYy stored in processar. Under this storage scherrﬁf(,zYkT_lsk is obtained
by sending the respective rows fto their related processors. That is, since proceissor
containsrows$,i + N,i +2N,...,i +N LE/NJ — N of Yy_1, it receives the same subset
ai( of rows fromsy, and perform

~|i< = (Y|l71>TSiK~

This information is sent to the host which compueassy = ZiN:l &1, and proceeds with
the eigendecomposition for the arrowhead matrix of shape shown in (6).
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FIG. 3. Rows ofY, are distributed in a cyclic order through the processors. The shadowed area indicate
new entries foiv}, i =1... N, and the new rovg, in the wraparound process.

For this case, the host splits mat® as in (11). Each componeM}_, is updated by
sendingQy to processor which performs

Y,i = Yll—lcjk-

This multiplication adds one more columnYp. Finally, the host sends rogf to the next
unbalanced processor in the cyclic process (processoithe example shown in Fig. 3).
It is important to notice that this choice contributes for storage-savings but it incree
communication overhead.

3.4. Parallel Implicit Restart(Step4.d)

After each iteration, the matri§ increases its dimension by one row and columr
causing the computation of eigenvalues in the subspace to increase its cost. An im
restart scheme is used to periodically reduce the dimensi&. d®ecall the orthogonal
decomposition of:

Ak = Y, Sk (12)

Let g be a fixed restart index, and the minimal dimension for the projected matf$.
Sincem > p, the desired eigenvalue approximations are contained on thenfestries of
Ag. If dimension ofS; exceeds the valum + g, one can drop theg largest eigenvalues.
This can be done by splitting

_ Ak 0
A= [ 0 Ak,z]

andYyx =[Yk 1, Yk.2] whereAy 1 andYy 1 correspond to then smallest eigenpairs. (Remem-

ber thatA andYj are already sorted, as specified in the previous paragraph.) Proj&ctin
over the space spanned byrtsmallest eigenvectors, we obtain thex m reduced matrix

S =Y S = Axa (13)
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Thus, a particular computation occurs during a restarted iteration. Since refation
V] AV must be preserved @ ", decomposition (12) imposes

Ak1= (VYen) AYi1,

which corresponds to upda¥ ™ = Vi Yy ; and consequenti, " = W Y 1. Also, Eq. (13)
claims that the new eigenvectors 33‘“ ) are canonical vectors. It reduces relation (5) to
Yk = Q« when performed right after a restarted iteration. It is important to note tiat if
is not orthonormal the updat@f” = VkYk.1 may compromise the condition th ) must
be an orthonormal basis. Loss of orthogonality may happen due to roundoff errors in E
(9) and (10). To avoid such a problem the modified Gram—-Schmidt method is appliec
Y1 before computing/, ™ andw,*.

Arestarted iteration requires one more group of updafes= Vi Yk 1 andWy < Wi Yk 1.
Thus, each processbomay discard the last columns ofY because the number of columns
is reduced fronm + g to m, and compute the updat®¥$ < V! Yy 1 andW, < W, Yy ;.

ALGORITHM 3. Parallel Implicit Restart Given the set of eigenvalues and eigenvec-
tors Yy and the associated matricésandW, check for restart.

1. If (m+ g) < dim S(dimension ofAy)
Ay < (Ak)(mxm)-
OrthonormalizeYy ; = first m columns ofYx.
For all nodes,i e{1,..., N}
Vi < V| Y1
Wi < W Yy 1.
dimS<«~m.
2. Stop.

4. TIMING ANALYSIS FOR THE PARALLEL ALGORITHM

All the pieces presented above can be integrated to form the complete parallel ver
for the DSE algorithm (Algorithm 4 shown below). Next, estimates for computational al
communication timings are presented.

ALGORITHM 4. Parallel Restarted Davidson for Several Eigenvalu&en a matrix
A, an initial vectorxy, iteration limitn, number of eigenpairp, restart indexeg anm, and
convergence toleranege compute approximations andu for the p smallest eigenpairs
of A. N indicates the number of processors being used.

1. Setv; < X1/||X1]l2. (initial guess)
2. For all nodes,i €{1,..., N}
Vi < [vh] Wo <= [1; Yo < [].
3. Ap«<[];: dimS<«0.
4. Forj=1,..., pdo (approximation foij th eigenpair)
Fork=1,...,ndo
(a) Broadcasty.
(b) For all nodes, i {1, ..., N}
Receivevy.
Computew), = Alv, and updatéV, =[W,._,, wi].
Compoutes' = (V! )Tw! and send to the host.
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(c) Computes, = ZiN:l s in the host and use Algorithm 2 to obtain
the eigendecompositiony andYy. Update dimS < dim S+ 1.
(d) Use Algorithm 3 to check and apply restart when it is necessary.
(e) Broadcast theth smallest eigenpailry, yx from Ax andYy,
wherel = min(dim S, j).
(f) For all nodes, i {1, ..., N}
Receiveyy, andiy.
Computerj = Wik — AV, yi.
(9) Broadcasty by appending alt}. (residual vector)
(h) If |Irgll2 < € then exit inner loop.
(i) tx < Mry. (preconditioning)
(j) Send slicet| to nodei, i € {1, ..., N}.
(K) vkr1 < pmgs( Vi, tk). (parallel modified Gram—-Schmidt).
5. Stop.

The DSE algorithm performs matrix multiplies at various times, e.g., the computatiot
wg = Avk andty = Mry; this is the most time consuming step of the algorithm. Howeve
we do not include these operations in our theoretical operation count because the strt
of matrix A changes for different problems. Nevertheless, in our numerical experime
the timings shown include these matrix vector multiplications. Also, in our implemen
tions we resort to BLAS, which is an efficient matrix library and is optimized for ea
computer.

For the operation count, one iteration of the algorithm was divided into four major tas
(1) residual calculation(2) arrowhead-eigendecompositiof8) implicit restart(when ap-
pllcable) and (4)modified Gram—-Schmidt orthonormalizatiohhe residual calculation

kak - Akvkyk depends on the ordée of Vi and W. Eachrk is obtained with
4kn/N flops. The arrowhead-eigendecomposition employs three sub-steps, namely
matrix multiplications, = (V_;)T w, eigenvalue-eigenvector computations, and updatit
Yi = Yi_1 Qy. The first two sub-steps are accomplisheddn/AN andck? flops, respectively,
for some constardt The last sub-step can be understool astrix-vector multiplications
distributed acrosbl processors, which leads t&% N flops. Implicit restart occurs sporad-
ically and proceeds the updativ =V, Y 1 andW, =W, Y, 1 in 4kmryN flops. Finally,
the mgs orthonormalization requirelsr® N flops. The resulting lower-bound for the com-
putational timeT °P(k) spent in one iteration, excluding the restart operations, is determir
by adding all the above float point operations:

2
ToP(k) = K+ o + S%k.

Such estimate reflects time dependencies on the order of the probjethe number of
processors usgdN), and the current dimensiok)(of the subspacg;. Given the total num-
ber of iterationsg) taken by the DSE algorithm to converge, the global computational tir
can be estimated, for both non-restarted and restarted cases. First consider the case wi
restart (nr) was applied. In this case, the dimenkiofthe subspace successively increase
and the resulting tim&<P(s) is a straightforward summation of the times for each iteratio

S

2 S S n S
TPs) =) TPk = N Y K+ed K+ 8 >k
k=1 k=1 k=1

LAY - E Y LU T P AR
2N \3 N N 2 2N N 6/
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Notice that update¥y = Yk_1(§k produce the higher order term & It demonstrates the
overall effect of growing matrice¥x. The restart parameterimposes the upper bound
(m + q) for the order ofYy. To develop an estimate for the restarted case, we need
understand the behavior of dimensiknAt the beginning, dimensiok grows from 1

to m+ g. After the first restart is reduced ton and begins to grow again, ranging fram

to m + g, until the next restart is applied. So, the number of restarts, excluding the first
an integer division by. More precisely, the total number of restarts$aterations is given
by 1+ LWJ = L%J . And the number of remaining iterations after the last restart i
3 = (s — m — ) modqg. Notice that the case with restarts can be written in terms of time
without restartsT,SP, by adding the time spent before the first restart, the time from the fir
restart until the last restart, the remaining time after the last restart, and all the extra til
due to restarts. Thus the total computational tif{i&(s) using restarts is given by

TE(s) = TPM +q) + Q%J ) (TSP(m + q) — TP(m — 1))

+(TPM—1+8) — TPM - 1)) + {%J P

= f ; mJ (TeP(m+q) — TeP(m — 1) + P)
+TPM 45— 1), (14)

wheret P represents the extra computational work performed on each restart step. We
derive an upper-bound by noticing that q

S—m
T(s) < (TPm+q) — TP(m— 1) + 1) + TP(m+ q).

A restarted iteration applies modified Gram—-Schmidftein (m -+ q)(2m? +m) — %(mz—
m) flops, and performs the updatel$ =V, Yi 1 and W, =W, Y, 1 in 4m% (m + q) flops.

By recalling that the updat®, = Yc_1Q, in (5) does not occur after a restarted iteration,
we obtain

3

n 1 m
7P =AM M+ Q) + (M + @) 2m” +m) — S(m* —m) — 2

B n ) m 1 ,
_2(m+q)(4mN+2m +m) 2N 2(m m).

For the communication timing, considgas the message startup time gnthe per-word
transfer time. We assume three distinct communication operations and their theoretical 1
estimates in a mesh architecture [23he-to-oneeommunication is performed by sending a
message from one processor to another; it takesttislt,, for a message of sizeThis op-
eration is presented in the arrowhead solver where the host sends specific messages t
processor. For an iteration step of DSE, it takes ftitie+ 2t,,) for the host to distribute the
k intervals(dj_1, dj) across all processors and tifgs + kt,,) to receive thek associated
eigenvectors, each one of sizeéDne-to-allbroadcast is characterized by a single processc
sending the same message to all other processors. It take@dimé,,) log N and is also
related with the arrowhead solver: functipi) is transferred from host to all processors
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as a vector of sizekRkwhich takes timgts + 2kt,) log N; Matrix Yx has ordek and costs
(ts + k?t,) logN to be broadcastedhll-to-all broadcastreduction anddata gathering
belong to the most expensive class of communication taking tigrelt,,)(N — 1) for a
message of size These operations employ communications where all processors broad
different data to be added (reduction operation) or grouped (gathering operation) into
single processor. In one iteration of the algorithm reduction is performed when compu
&= E,N 1S by using a reduction operation ft arrays of sizé&k each; when computing
the norm||ry||? = Z, 1 |Irk |1 by a reduction oiN arrays of size 1 each; and when apply
ing mgs which employ& reductions forN arrays of size 1 each for the inner products
The above operations are accomplished with tithes kt,,)) (N — 1), (ts +t,)(N — 1), and
k(ts + t,) (N — 1), respectively. Data gathering is applied to concatenate the eigenve
approximationyx and the new vectorx, ;. The associated timings are based on the r
spective sizegts + kt,)(N — 1) and(ts + %tw)(N — 1). Notice that there is no particular
communication during a restarted iteration. Combining the estimates given above, we o
the communication tim& °™(k) for one iteration

TM(k) = [K(1+ N) + 2(log N + 2N — 2)]ts + [kz(l +log N)

+K@N +2logN — 1) + (%Jrl)(N —1)},”

Similarly to the computational timing analysis, we deduce the fiifi&s) spent ons
iterations of the non-restarted algorithm as

S

Tan(s) = ) TM(kK) =

k=1

S S
1+ N)Zk+2(logN + 2N —2)21 tg
k=1 k=1

+{(1+1logN) ) K>+ (3N +2IogN—1)Zk+< +1>(N —1)211

k=1 k=1 k=1

1 1 3
= §(1+ log N)t,, s> + {5(1 + N)ts + E(Iog N + N)tw] s
9 7 5 7 4 1
2logN + =N — = N+ =logN — = 1- =
+[( og +2 2>ts+(2 +609 3+n< N))tw}s,
and the communication timES™(s) for the restarted version as
s
TM(s) = {TJ (Ta"(m+q) — Ty"(m — 1)) + T+ 8 — 1). (15)
Whens < g we can also derive an upper bound for the total restarted time as
TM(s) < L5-m ] (TCm(m +q) — Ta"(m— 1)) + TS"(M + ).

5. NUMERICAL RESULTS

The parallel code for DSE was written in C. To achieve portability, we used MPI [15, :
for the communication standard. The Message Passing Interface (MPI) is a set of stan
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which describes the user interface for a message passing library. It provides a large s
functions which controls point to point and collective communication. The application c.
either migrate to a different implementation of MPI or a different computer just by recor
piling the code. Also, level 1, 2, and 3 BLAS routines [14] were employed. Currently ma
computer vendors provide optimized BLAS libraries which achieve a good performar
for vector and matrix computations.

Our computational results were obtained for the coefficient matrix which arises frc
using a finite difference (based @ 5 point stencil) method for solving the problem

—Au+gu=f (16)

on a unitary square domain. Considgo be null inside a 2 x 0.2 square on the center of
the rectangle and = 100 for the rest of the domain. Algorithm 4 was used for finding the
ten smallest eigenpairp & 10) and assumed convergence for residual norms less than
equal to 107(e =10"). The restart indexes were= 10 andm= 15. (This corresponds
to apply restarting every time that the projected maSiachieves order 25, reducing its
order to 15.)

For the numerical results, we used a diagonal preconditioner as in the original David
algorithm, an ADI preconditioner, and a multigrid preconditioner [30]. The ADI precor
ditioner can be derived by considering a splitting of the matrix into two parts. In terms
differential equations this corresponds to solving the linear system, first in relation to c
direction and then in the other direction. An acceleration parameter in a fashion simila
the SOR method can be incorporated. Details of these methods are shown in [38, 40, -

The multigrid solver is a well established iterative method for solving the systems ar
ing from discretizations of partial differential equations. In contrast with classical iterati
methods (Jacobi, Gauss—Seidel, SOR, or SSOR with Chebyshev acceleration) the co
gence rate of multigrid methods does not slow down as the size of the problems incre
[12]; in other words, for a given accuracy, it can solve problems imknowns inO(n)
time. A good introduction for multigrid algorithms is given in [6].

For the calculation of eigenvalues &, through Eq. (8), we followed [28] but used
Brent’s root finder [5] instead of bisection and secant methods.

Figure 4 compares estimates developed in Section 4 with the actual running timil
for two distinct grid sizes: 6% 63 and 124 127 (matrices of orders 3969 and 16129,
respectively.). Each problem was solved using 4, 8, 12, 16, 20, and 24 processors ot
Intel Paragon computer and the observed running tindiwegse plotted. Thus, the two values
of s (humber of iterations), for the two different matrices sizes were used in Egs. (14) ¢
(15) and then the estimated timings in Fig. 4 were derived.

Since the timing analysis only considers the major communication and computatio
efforts, the timing estimates are expected to be smaller than the actual algorithm timit
This can be demonstrated in Fig. 4. Nevertheless it can describe the behavior and pe
mance as the number of processors increases. The model proved to be very satisfact
detecting potential bottlenecks prior to coding the algorithm.

As MPI and BLAS libraries were available in both platforms, migration between tt
Intel Paragon and nCUBE is straightforward. Optimized BLAS is available on Parago
operating system [20]. A Fortran implementation of BLAS from Netlib [14] was compile

3 Running times refer to the DSE algorithm excluding the time spent applying the precondioner
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Actual times compared with theoretical estimates

743

— actual time
----- estimated time
O order 16129
X order 3969

FIG. 4. Actual and estimated times for Eq. (16). Results for two different matrix sizes performance on
Paragon are shown.

on the nCUBE. Table 1 compares actual running times in seconds for our test cas
both computers. The different curves are due to different granularities. Also after a cel
number of processors is reached, each curve rises away from its minimum point; this is
to increased interprocessor communication overhead. Our theoretical model predict

8 12 16 20

number of processors

optimal number of processors associated for each granularity.
The numbemM of processors for which the total parallel running tife= T,°° + T,
achieves its minimum is determined B§ = 0. This equation provides an upper-bount

forthe number of processors to be allocated on a given problem. As the number of proce

TABLE 1

24

Timings in Seconds for Problem (16) in the nCUBE and Paragon Computers

Matrix order 961 (31x 31) Matrix order 396963 x 63)
Order 16129
Processors Paragon nCUBE Paragon nCUBE Paragon

4 6.4 13 11 52 22

8 4.5 11 7.3 33 14
16 45 11 7.1 27 11
20 4.7 xt 7.1 #1 11
24 4.9 #! 7.2 ! 11

*! Not a subcube size.
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exceeds the upper-bound, either the parallel run time stays asymptotically at minimal va
or rises away from the it. Equations (14) and (15) were differentfaitedelation to N
resulting in a function depending orf M. The positive root indicates that the maximum
number of processors to be allocatedNis=5 for a matrix of order 961N = 10 for order
3969, and\ = 20 for a matrix order of 16129. The data in Fig. 4 and Table 1 show that o
timings for the mesh architecture (Paragon in our case) followed the theoretical estima

Preconditioning is another relevant issue concerning, performance [30]. Figure 5 cc
pares the convergence history of the residual norm for the first five eigenpairs for a ma
of order 3969. Here convergence was estimated usinad0~°. The restart indexes were
g =10 andm=15. For the numerical results in Fig. 5(a), a diagonal preconditioner wi
applied, that isM = (D — Al )~* whereD is the main diagonal of, the matrix discretiza-
tion for (16). At first, one may think that the points of sudden increase in the residual ar
consequence of restart steps. However, the multigrid preconditioner does not present s
problem (Fig. 5(b)). Moreover, with the multigrid preconditioner DSE finds all five eiger
values after 39 iterations while the diagonal version requires 358 iterations. The variati
in Fig. 5(a) are due to the poor performance provided by a diagonal preconditioner. Inde
each eigenvector approximation is obtained by preconditioning the residual of the curi
approximate solution. Although the eigenvalue approximatjoconverges monotonically
to the actual eigenvalue, the preconditioner may worsen the angle between successive €
vectorsuvy, and sparfVy). It can also worsen the convergence rate by reducing the accure
of the approximate eigenvectors. Moreover, the diagonal preconditioner may induce
lock in phenomena; that is, the algorithm will converge to eigenvaldefined by the cur-
rent matrix(D — A1)~! instead of the actughth eigenvalue. Consequently, the algorithm
can attribute wrong multiplicity to the eigenvalues. In our example, the second eigenve
is repeated, but the DSE algorithm with preconditiofi@r— A1)~ does not demonstrate
the eigenvalue multiplicity of two. Our last figure illustrates numerical results with an AL
preconditioner. For our test cases, we obtained the best results with this preconditic
Figure 6 compares our timings against PARPACK [26]. PARPACK is a parallel packa
available for the calculation of several eigenvalues based on the Arnoldi method. For
cases studied, our timings are always competitive with PARPACK and significantly bet
for increased problem size.

6. CONCLUSIONS

Recently, progress has been made in the use of Generalized Davidson algorithm:
finding several eigenvalues [30]. In this paper we describe the a Davidson for Sev
Eigenvalues (DSE) algorithm, and develop its parallelization. The main improvement
this paper is the way the eigenvalues are calculated for the subspaces. The relatior
between the consecutive subspaces allowed us to develop a highly parallel step for
part of Davidson-type algorithms, particularly DSE. The greatest part of the computatio
work consists of matrix vector multiplies. For the parallel implementation, row partitionir
of data was used; BLAS and the MPI library were incorporated. Other parts of the co
additional to matrix vector multiplies, generated the timing model and predicted the gen

“Notice the above calculations still depend on the paransetie number of iterations performed by the DSE
algorithm. Further analysis may provide a prior upper bound ftgpendent on the kind of matrix studied, so that
the timing model can be applied as a tool when deciding the number of processors to be allocated.
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DSE (ADI) and PARPACK for four distinct problem sizes
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FIG. 6. Comparison with PARPACK.

behavior well. From the numerical results, when multigrid is used instead of the diago
preconditioner (as in the Davidson algorithm) we showed that the number of iteration:
significantly decreased. Even better results were obtained with an ADI preconditioner. (
implementation is portable, and numerical results were compared between the the nCl
and Paragon, with better results on the latter. Finally, our code is competitive with PARPA
and better in some cases.

APPENDIX: STABILIZING THE EIGENVECTOR CALCULATION

The DSE algorithm employs the arrowhead-decomposition iteratively. Using the arrc
head representation, the firgtcolumns ofV_; approach eigenvectors &. Thus the
corresponding entries & approach zero. Such behavior may produce roundoff erro
on the eigenvector calculation: as tfith diagonal entryd; converges to thgth eigen-
valuexj of the original problem, the eigenvalue approximatignalso converges taj.
Consequently, the ratio=35,(j)/(1; — d;) presented in the eigenvector calculation (9),
will operate org(j) — 0 andx; — d; — 0 which may result in a wrong estimate for one
entry of the eigenvectay. To overcome this we avoid evaluating ratiexplicitly. Instead,
the identityp(;) = 0 can be used to obtainin (9). From (8) we have

—dj =¢j)) —dj = A; —dj =s«—dj +

XAk
Aj—d; +.z:1:/\1 —d’
1]
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which is divided by (j) # 0, leading to

S — 0 + &I/ — db))
W4+au—1=0, o= e .
Sk(])

Thusu=(—a + va2 + 4)/2, where the choice of the positive or negative root is ma
according to the sign & (j)/(x; — d;).
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