

JOURNAL OF COMPUTATIONAL PHYSICS144,727–748 (1998)
ARTICLE NO. CP986003

A Parallel Davidson-Type Algorithm
for Several Eigenvalues∗

Leonardo Borges and Suely Oliveira

Computer Science Department, Texas A&M University, College Station, Texas 77802
E-mail: suely@cs.tamu.edu

Received October 23, 1997; revised April 8, 1998

In this paper we propose a new parallelization of the Davidson algorithm adapted
for many eigenvalues. In our parallelization we use a relationship between two con-
secutive subspaces which allows us to calculate eigenvalues in the subspace through
an arrowhead matrix. Theoretical timing estimates for the parallel algorithm are de-
veloped and compared against our numerical results on the Paragon. Finally our
algorithm is compared against another recent parallel algorithm for multiple eigen-
values, but based on Arnoldi: PARPACK.c© 1998 Academic Press

1. INTRODUCTION

Many iterative methods for eigenvalue problems proceed in a similar way to obtain
a solution for the eigenproblemAu= λu. They construct an orthonormal basisV and
approximate the exact eigenvectoru by a vectory in the subspace spanned byV [33]. In
other words the original problem is projected onto the subspace which reduces the problem
to a smaller eigenproblemSky= λ̃y, whereSk=VT AV. Then the eigenpair(λ̃, y) can be
obtained with much less computational effort. The approximated eigenvectory is mapped
back to the eigenvector of the original problem asu=V y.

The Arnoldi algorithm starts from a given vectorv1= x1/‖x1‖ and successively gen-
erates orthogonal basesQk for Krylov subspacesKk(A, v1)= span{v1, Av1, . . . , Ak−1v1}.
For a general matrix the projected matrixSk is a Hessenberg matrix. For a symmetric matrix
the projected matrix is a tridiagonal matrix and the Arnoldi algorithm is equivalent to the
Lanczos algorithm [17]. On the other hand, Davidson-type methods build an orthonormal
basis{v1, v2, . . . , vk} depending on the initial vectorx1, the matrixA, and a preconditioner
Mλ. Specifically, the preconditionerMλ is applied to the current residual,rk= Auk− λ̃kuk,
and the preconditioned residualtk=Mλrk is orthonormalized against the previous columns

∗ This research is supported by NSF Grant ASC-9528912 and a Texas A&M University Interdisciplinary
Research Initiative Award.

727

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.

728 BORGES AND OLIVEIRA

of Vk= [v1, v2, . . . , vk]. The new orthonormal basisVk+1= [Vk, vk+1] defines the new pro-
jected matrixSk+1=VT

k+1AVk+1 and the process is repeated iteratively. In this paper we
present a parallel algorithm for Davidson-type methods.

Recently, the Generalized Davidson (GD) algorithm has been modified to calculate sev-
eral eigenvalues [30]. We use restarts as suggested in [10, 27] since it keeps the size of
the subspace small, while preserving important information from previous iterations. This
means that the cost of an iteration is kept small, hopefully without significantly increasing
the number of iterations, and making the overall algorithm more efficient.

Some previous implementations for the Davidson algorithm solve the eigenvalue problem
in subspaceSk by using algorithms for dense matrices: early works [8, 39] adopt EISPACK
[34] routines or faster implementations of Householder QR [9]. Later implementations
[36, 37] use LAPACK [1].

Partial parallelization is obtained by addressing the matrix-vector operations and sparse
format storage for matrixA [36, 35, 37]. The parallelization of [35] aims the reduction
of synchronization needed by inner products and has fine granularity. In this paper we
present a relationship between two successive subspaces (Sk−1 andSk) which allows us to
calculate the eigenvalues in the subspaceSk through an arrowhead matrix representation.
The arrowhead structure is extremely sparse and the associated eigenvalue problem can
be solved in a highly parallel way. We address the data storage for distributed memory
architectures. Matrices are partitioned along distinct processors so that the final distribution
is well balanced and most of the computational work can be performed in place.

In this paper, we present and compare the Davidson for Several Eigenvalues (DSE)
algorithm in two different parallel architectures: the nCUBE and the Paragon. The words
processorand nodeare used interchangeably. To achieve portability we used MPI, and
level-2 and level-3 BLAS whenever possible, in our implementations. Theoretical timing
estimates for the new parallel algorithms are developed and compared against our numerical
results. Much of the parallel techniques can be used for parallelization of GD in addition
of the parallelization of the new variant: DSE.

The remainder of the paper is as follows. In Section 2 we present the DSE algorithm. In
Section 3 we design parallel steps for DSE. In Section 4 we develop timings bounds for
the parallel algorithm. In Section 5 we show numerical results and finally in Section 6 we
present our conclusions.

2. DAVIDSON FOR SEVERAL EIGENVALUES

Although in the original formulationMλ is the diagonal matrix(diag(A)− λI)−1) [10],
GD algorithms adopt different operators forMλ. For example in [30], a multigrid precondi-
tioner was used. The Davidson for Several Eigenvalues (DSE) algorithm is a new version of
GD, adapted for calculating several eigenvalues [30], and implemented in a restarted man-
ner along the lines of [7]. A nice review of iterative methods for finding a few eigenvalues
of large matrices is given in [11]. DSE computes the firstp eigenpairs ofA in order, and
uses implicit restarts to limit the increasing computational work from successive largerVk

andSk subspaces. The DSE algorithm is given as

ALGORITHM 1. Restarted Davidson for Several Eigenvalues(DSE). Given a symmetric
matrix A, an initial vectorx1, number of eigenpairsp, restart indexq, minimal dimensionm
for the projected matrixS(m> p), and convergence toleranceε, compute approximations

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 729

λ andu for the p smallest eigenpairs ofA.

1. Setv1← x1/‖x1‖2. (initial guess)
2. V1← [v1].
3. S0← [] ; dim S← 0;W0← [] ; k= 1;
4. For j = 1, . . . , p do (approximation forj th eigenpair)

While k= 1 or‖rk−1‖<ε do
(a)wk← Avk

(b) Wk← [Wk−1, wk]
(c) ComputeVT

k wk and make it the last column and row
of Sk=VT

k AVk. Update dimS← dim S+ 1.
(d) If (m+ q)≤ dim S (restartSk)

ComputeSk=Yk3kYT
k , the complete symmetric

eigendecomposition ofSk, where3k is a diagonal
matrix with its entries ordered in increasing order.
ReduceSk← (3k)(m×m) to its m smaller eigenvectors,
and updateVk andWk. Update dimS←m.

(e) Compute thel th smallest eigenpairλk, yk of Sk, where
l = min(dim S, j).

(f) uk←Vkyk.
(g) rk← Auk − λkuk=Wkyk − λkVkyk. (residual)
(h) If ‖rk‖2<ε then exit inner loop.
(i) tk←Mrk. (preconditioning)
(j) vk+1←mgs(Vk, tk). (apply modified Gram Schmidt)
(k) Vk+1← [Vk, vk+1].
End while

End do
5. Stop.

In the original Davidson algorithm the initial guess is a set of unit vectors corresponding
to p diagonal elements (which is a good choice for finding thep biggest or smallest
eigenvalues of a diagonally dominant matrix). In our new version (DSE), we were not
necessarily treating diagonally dominant matrices. This makes the choice of the initial
guesses for the eigenvectors harder. For simplicity our initial guess is a vector which is
generated randomly. The best random vector choice has independent components taken
from a normal distribution. In contrast, the original Davidson algorithm is deterministic but
more susceptible to hidden symmetries in the matrices. Another aspect of our algorithm is
that, when coupled with a multigrid or ADI preconditioner, it is often able to identify the
multiplicity of multiple eigenvalues. More numerical results about the behavior of the DSE
algorithm are shown in [4, 30].

In the next section we detail the parallel steps of the DSE algorithm: data distribution,
parallel orthonormalization, parallel calculation of eigenvalues on subspaceSk, and parallel
implicit restarting; these parallel steps appear in any variation of GD. In addition to the
Diagonal precondioner we will present numerical results with Multigrid and ADI precon-
ditioners. In this paper we do not intend to address parallelization issues of the multilevel
or ADI preconditioners: For multigrid preconditioners several implementations are avail-
able in the literature [3, 16, 25]. The same is true about the parallelization of the ADI
preconditioner [13, 21, 24].

730 BORGES AND OLIVEIRA

3. PARALLEL STEPS OF DSE

A parallel implementation for the restarted Davidson for several eigenvalues (DSE)
should exploit the data parallelism inherent in the algorithm. A message-passing com-
puter allows good scalability. If different workloads must be managed, as happens in the
arrowhead matrix eigenvalue calculation (step4.e), a particular processor can be selected
to coordinate the task.

3.1. Data Representation and Distribution

Data storage is an important aspect when parallelizing the algorithm described above. Ma-
trices are partitioned along distinct processors so that the program exploits all the best pos-
sible data parallelism. At each iteration, a new vectorvk is added to the basis{v0, . . . , vk−1}.
This is reflected by the addition of a new column to matricesVk andWk (steps4.band4.k).
This makes row-wise storage the best partitioning scheme, since those matrices always have
a constant number of rows and the use of restarts keeps a bound on the number of columns;
this way data distribution is uniform among the processors for these matrices. Moreover,
computations such as matrix-vector multiplies and modified Gram Schmidt orthogonal-
ization can be performed in place. In the following description a subscript stands for the
iteration number in DSE (Algorithm 1), and superscripts indicate which processor allocates
the data. LetA be a matrix of ordern andN be the number of processors available. Matrix
A can be split into row blocksAi , i = 1, . . . , N, each one containing≤dn/Ne rows of A.
For simplicity we will assume thatn is a multiple ofN:

A=

A1

A2

...

AN

 .

Thus processori, i = 1, . . . , N, storesAi , thei th row block ofA. MatricesVk andWk are
stored in the same fashion

Vk =

 V1
k
...

V N
k

 and Wk =

 W1
k
...

WN
k

 .
Figure 1 illustrates the data allocation. This implies thatV1= v1 must be initialized in the
same way; that is, the firstn/N rows ofv1 (namedv1

1) are stored in processor 1, thei th
row-block of v1(v

i
1) is stored in processori , and so on. In the following discussion we

present the parallelization steps of the DSE algorithm when adopting the just described
data structure, in a MIMD architecture.

Even though at first glance we may thinkw= Av cannot be computed in place, this
can be overcome by sending vectorvk to all processors so that each one computes its
respective slice ofwk, namelywi

k= Ai vk. Thus matrixWi
k can be updated in processori as

Wi
k = [Wi

k, w
i
k].

Residual computations (steps4.f, 4.g,and4.h) are also performed in place:r i
k=Wi

k yk−
λVi

k yk. Specifically, vectoryk is broadcast to all processors; each processor computes its

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 731

FIG. 1. Matrices are distributed row-wise through the processors.

slice of rk and obtains the partial value‖r i
k‖22. The residual vectorrk can be evaluated by

concatenating the slices

rk =

 r 1
k
...

r N
k

and the respective norm is given by‖rk‖2= (

∑N
i = 1 ‖r i

k‖22)1/2.

3.2. Parallel Orthonormalization(Steps4.j and4.k)

Steps4.j and4.k correspond to applying the column version1 of modified Gram–Schmidt
(mgs) to the extended matrix [Vk, tk]. The data distribution implies that the mgs algorithm
will be implemented with a row-wise partitioning scheme similar to the one of [29]. In the
mgs algorithm we do not have significant loss of orthogonality; thus only the new column
tk needs to be modified since the current basisVk has been previously obtained by the mgs
algorithm in previous iteration steps. Summarizing,tk is orthonormalized in relation to the
current basisVk by

For j = 1 to dimVk

cj ←〈v j , tk〉
(1)

tk← tk − cj v j

vk+1← tk/‖tk‖

Figure 2 represents data distribution amongN processors for steps4.j and4.k.. Each pro-
cessori computes the partial inner productsci

j =〈vi
j , t

i
k〉, j = 1, . . . ,dim Vk, wherevi

j and
t i
k represent the rows ofv j andtk stored in processori , respectively. The partial resultsci

j are

added in ahostprocessor to evaluate the coefficientcj =
∑N

i=1 ci
j which is then broadcasted

and used to perform the related projection on each processort i
k← t i

k − cj v
i
j , i = 1, . . . , N.

The new columnvk+1 is obtained by the normalization oftk, vi
k+1= t i

k/‖tk‖.

1 The reader should not confuse the implementation of mgs (in this case column version and is determined by
the ordering of loops in the mgs algorithm) with the storage scheme chosen: row-wise.

732 BORGES AND OLIVEIRA

FIG. 2. Data distribution for the modified Gram–Schmidt algorithm.

The orthonormalization process is accomplished usingO(k̄) broadcast-type communi-
cations wherēk= dim Sk, the number of columns forV at iterationk, which depends on
the restart indexesq andm in the DSE algorithm. Notice that a column-wise storage might
have a smaller upper bound included for its communication time: groups of consecutive
columnsv j would be stored in the same processor and the new columntk broadcasted to
all processors so that the coefficientscj in the code loop (1) would be performed locally.
Thus, the resulting communication time should beO(N) point-to-point communications.
However, those coefficients must be evaluatedin order to guarantee the stability provided
by the modified Gram–Schmidt algorithm. So a column-wise implementation would result
in a sequential algorithm: only one processor at time would be calculatingcj . The parallel
implementation of the mgs presented here differs from the pipelined algorithm of [29],
partially because mgs does not implement the outer loop of the full version of the modified
Gram–Schmidt algorithm. The Davidson algorithm itself implicitly supplies the outer loop
of modified Gram–Schmidt since each iteration creates a newtk which is orthogonalized
against the previous basis vectors.

3.3. Parallel Calculation of Eigenvalues of Sk (Step4.e)

Since the complete eigendecomposition ofSk=VT
k AVk must be found for everyk,

the solution method used for the eigenproblemSkyk= λkyk is important. Although the
eigenvalues calculation in the subspace isO(k3) and the MGS step cost isO(kn), if O(k2)

approachesn, the eigenvalue calculation ofSk is a significant step of the Davidson algorithm.
Restarts can keepk small and also avoid this problem. It should be noted however that
the constant inO(k3) may be large. The relationship betweenSk and Sk−1 [30] provides
an alternative way to parallelize this step. LetSk−1=Yk−13k−1YT

k−1 be the orthonormal
decomposition of the symmetric matrixSk−1. Notice that

Sk = [Vk−1, vk]T A[Vk−1, vk] =
[

Sk−1 sk

sT
k skk

]
, (2)

whereskk= vT
k wk andsk=VT

k−1Avk=VT
k−1wk. Let

S̃k =
[

YT
k−1 0

0 1

]
Sk

[
Yk−1 0

0 1

]
=
[
3k−1 YT

k−1sk

sT
k Yk−1 skk

]
. (3)

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 733

We can see that matrix̃Sk is similar to matrixSk and is in the form of an arrowhead matrix

S̃k =
[
3k−1 s̃k

s̃T
k skk

]
,

wheres̃k is the column vectorYT
k−1sk. Thus, the eigenvalues ofSk can be obtained by evalu-

ating the eigenvalues of the arrowhead matrixS̃k. Given the orthogonal eigendecomposition
of S̃k

S̃k = Qk3k QT
k (4)

identity (3) is equivalent to

Sk =
[
Yk−1 0

0 1

]
S̃k

[
YT

k−1 0
0 1

]
.

SinceSk is symmetric it also has an orthonormal decompositionSk=Yk3kYT
k ; the previous

equation establishes the recursive relation

Yk =
[
Yk−1 0

0 1

]
Qk, (5)

for the eigenvectors ofSk. Given the eigenvalues3k−1 and eigenvectorsYk−1 of Sk−1, after
using (3) for construction of̃Sk, decomposition (4) can be used to find the eigenvalues3k and
respective eigenvectorsYk of Sk by (5). Oliveria improved the parallelization of eigenvalue
algorithms for arrowhead matrices [31]. Here we choose to use the O’Leary and Stewart
algorithm presented in [28]. Their algorithm is for symmetric arrowhead matrices and can
be applied to find3k and Qk with O(k2) computational effort. Consider the following
representation for̃Sk

S̃k =

d1 0 0 · · · 0 s̃k(1)
0 d2 0 · · · 0 s̃k(2)
0 0 d3 · · · 0 s̃k(3)
...

...
...

. . .
...

...

0 0 0 · · · dk̄−1 s̃k(k̄− 1)
s̃k(1) s̃k(2) s̃k(3) · · · s̃k(k̄− 1) skk

, (6)

wherek̄ stands for the order of̃Sk and thedi are the eigenvaluesλi of3k−1, or, eigenvalues
of Sk−1. Assume all reducible2 eigenvaluesdi have already been removed from̃Sk.

The interlacing theorem [32] (or bracketing theorem for quantum chemists) is the basis
for the method. This theorem has roots which go back to [2] and more recently has become
known as Cauchy’s interlacing theorem; it states that if3k−1 has its entries ordered in
increasing orderd1≤ d2 ≤ · · · ≤dk̄−1, then the sequence of diagonal elements in (6) defines
a set of intervals{(dj−1, dj) : j = 1, . . . , k̄}each one containing one and only one eigenvalue
of S̃k, unlessdj−1= dj . Numerically,dj−1 anddj are considered to be equal if their relative

2 For a reducible eigenvaluedi we haves̃k(i)= 0. In other words, the corresponding eigenvector is thei th unit
vector.

734 BORGES AND OLIVEIRA

difference is less than machine epsilon (2× 10−16 for IEEE double precision). Boundsd0

anddk̄ are derived from Gershgorin’s localization theorem [22]:

d0 = min

{
d1− |s̃k(1)|, . . . ,dk̄−1− |s̃k(k̄− 1)|, skk −

k̄−1∑
i=1

|s̃k(i)|
}
,

dk̄ = min

{
d1+ |s̃k(1)|, . . . ,dk̄−1+ |s̃k(k̄− 1)|, skk +

k̄−1∑
i=1

|s̃k(i)|
}
.

If dj−1< dj then the associated eigenvalueλ j satisfiesdj−1<λ j < dj and can be found as
a root of det(S̃k− λI)= 0. Sincedj − λ 6= 0, j = 0, . . . , k̄, for any eigenvalueλ of S̃k, the
j th entry in the last row of̃Sk can be eliminated by using the diagonal valuesdj − λ as
pivot elements. That is, Gaussian elimination is applied on the last row ofS̃k. The resulting
matrix is

d1− λ 0 · · · s̃k(1)

0 d2− λ · · · s̃k(2)
...

...
. . .

...

0 0 0 ϕ(λ)

 , (7)

where

ϕ(λ) = skk − λ−
k̄−1∑
l=1

[s̃k(l)]2

dl − λ . (8)

Consequently, condition det(S̃k−λI)= 0 is equivalent to have the determinant of (7) equal
to zero, andλ is an eigenvalue of̃Sk iff ϕ(λ)= 0. A root-finding method can be applied to
evaluateλ j and the associated eigenvectorqj = (qj (1), . . . ,qj (k))T , where

qj (l) =

s̃k(l)

λ j − dl
, l = 1, . . . , k̄− 1

1, l = k̄.
(9)

Notice that if a diagonal entrydl is already close to an actual eigenvalueλ, then the norm of
the associated term̃sk(l)may be small so that some terms in Eq. (9) may generate significant
roundoff errors. We address this problem in the Appendix of this paper.

Repeated valuesdj−1< dj = · · · = dj+µ < dj+µ+1 indicate multiplicityµ for the eigen-
valuedj+1. In this case, theµ associated eigenvectorsqj+i , i = 1, . . . , µ are obtained by

qj+i (l) =

0, l = 1, . . . , j − 1
s̃k(l) s̃k(j + i)

s̃k(j)2+ · · · + s̃k(j + i − 1)2
, l = j, . . . , j + i − 1

−1, l = j + i
0, l = j + i + 1, . . . , k̄.

(10)

Eigenvalues are grouped by increasing order so that3k will define a new ordered set of
intervals{(dj−1, dj)} in the next iteration. Moreover, thel th eigenpair(λk, yk) of Sk can be
retrieved from3k andYk, as required in the DSE algorithm.

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 735

The arrowhead algorithm of [29] for decompositionS̃k= Qk3k QT
k is highly paralleliz-

able. Distinct eigenvalues can be processed simultaneously. In this case, a unit of work
consists of computing the eigenvalueλ j and related eigenvector(s)qj+1, i = 1, . . . , µ, re-
siding in the given interval(dj−1, dj). Notice that different intervals may generate dis-
tinct amounts of work due to different steps for calculation of roots ofϕ(λ), and if
dj−2< dj−1= dj < dj+1, λ j = dj and the root-finding algorithm does not even need to be
applied. Thus, it is difficult to predict the amount of work performed by each processor. An
efficient synchronization among these concurrent computations must resolve the schedul-
ing problem [19]. A particular processor is selected as ahost to coordinate the work. It
removes the setI ={i : di is reducible} of reducible eigenpairs from matrix̃Sk and be-
gins by sending one or a group of intervals{(dj−1, dj) : j ∈ J} from the irreducible set
J={1, . . . , k̄= dim Sk} − I to the processors. Results are sent back to the host, indicating
that the respective processor is ready to receive another group of intervals. Simultaneously,
the host groups all eigenvaluesλi , i ∈ I , andλ j , j ∈ J, in the vector3k and respective
eigenvectorsqi andqj as columns ofQk.

Recall from Eq. (2) thatSk is obtained by addingsk=VT
k−1wk as a new row and column

for Sk−1. Moreover, each processor computes locally its respective slice ofwk aswi
k= Ai vk.

This data distribution allows the host to obtainsk as a sum of partial termsσ i
k = (Vi

k)
Twi

k

which can be computed simultaneously. In other words,sk=
∑N

i=1 σ
i
k is given by

sk =
[

N∑
i=1

σ i
k

]
=
[(

V1
k

)T ∣∣ · · · ∣∣(Vi
k

)T ∣∣ · · · ∣∣(V N
k

)T
]

w1
k
...

wi
k
...

wN
k

.

In practice, the matrixSk will not be stored: only a vector for3k and a matrix forYk are
required from one iteration to the next.

The recursive relation (5) for calculation of eigenvectors is based on the updating ofYk at
each iteration and can also be performed in parallel. We rewrite the eigenvectors calculated
from decompositioñSk= Qk3k QT

k as

Qk =
[

Q̃k

qT
k

]
, (11)

whereqT
k is the last row ofQk. Under this notation, the new set of eigenvectorsYk can

be obtained by computing̃Yk=Yk−1Q̃k (which adds one more column intoYk−1), and by
appending the new rowqT

k into matrixỸk. At first look, this update could be performed at
the host after gathering the individual eigenvectors (columns ofQk) from the processors.
Further insight reveals that the update (5) can be performed in a distributed way, provided
that each processor contains a copy ofYk−1: as soon as a given processor obtains a new
eigenvectorEq of S̃k (i.e., a column ofQk), it uses the splittingEq= [q̃T ,q]T similarly to
(11), so that the corresponding column ofYk is given byy= [(Yk−1q̃)T ,q]T . After that, the
processors send the new columns ofYk back to the host, instead of a column ofQk.

Notice that each processor contains a copy of matrixYk. It may look redundant, however,
this data structure allows the parallelization for update (5) as described above. Moreover,

736 BORGES AND OLIVEIRA

restarting imposes an upper-bound for the size of matrixYk independent of the number of
iterations. It guarantees a modest storage requirement forYk. In the remaining sections of this
paper, we will be addressing the implementations of DSE which maintains a copy ofYk on
each processor. Combining the above considerations we obtain

ALGORITHM 2. Parallel Arrowhead-Decomposition. Given the previous set of eigen-
values3k−1 and the new rowsk for Sk, compute the new set of eigenpairs3k andYk.

1.3k← [] ; Qk← [].
2. Computẽsk← (Yk)

Tsk.
3. d←3k−1.
4. Remove all reducible eigenvalues ond and compute multiplicity

for the remaining intervals(dj−1, dj) ond.
5. Broadcastd, s̃k andskk.
6. Dispatch a interval (or a group) to each node.
7. host:

While there are eigenpairs to be received back
Receive a eigenpair (or a group) from any nodei .
If there is a interval (or group) to be sent

Send it to nodei .
else

Nodei is done.
Add the new eigenpair (or group) to3k andYk.

other nodes:
While node is not done

Receive a interval (or group) from host.
Compute the eigenpair (or group).
Compute update (5) for the new eigenvector(s).
Send the associated eigenpair (or group) to the host.

8. BroadcastYk.
9. Stop.

If no restarting is applied or if a large number of eigenvalues is desired, the dimension ofYk

will increase considerably. Then, storage may turn out to be a dominant issue. To overcome
this problem, we would scatterYk throughout the processors. MatrixYk can be partitioned
by rows, as wereVk andWk, but in a wraparound manner: since it is a square matrix that
increases after each iteration, a row-wise cyclic striping may be applied to provide a well
balanced distribution of data between processors. Thus, the 1× 1 matrixY1 will be stored
in processor 1; in the next iteration, it will be updated as a 2× 2 matrixY2 which will be
stored in processors 1 and 2, and so on. Figure 3 shows a general situation whereYi

k denotes
the rows ofYk stored in processori . Under this storage scheme,s̃k=YT

k−1sk is obtained
by sending the respective rows ofsk to their related processors. That is, since processori
contains rowsi, i + N, i + 2N, . . . , i + Nbk̄/Nc − N of Yk−1, it receives the same subset
si

k of rows fromsk, and perform

σ̃ i
k =

(
Yi

k−1

)T
si
k.

This information is sent to the host which computess̃k ass̃k=
∑N

i=1 σ̃
i
k , and proceeds with

the eigendecomposition for the arrowhead matrix of shape shown in (6).

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 737

FIG. 3. Rows ofYk are distributed in a cyclic order through the processors. The shadowed area indicates the
new entries forYi

k , i = 1 . . . N, and the new rowqT
k in the wraparound process.

For this case, the host splits matrixQk as in (11). Each componentYi
k−1 is updated by

sendingQ̃k to processori which performs

Yi
k = Yi

k−1Q̃k.

This multiplication adds one more column toYi
k . Finally, the host sends rowqT

k to the next
unbalanced processor in the cyclic process (processori , in the example shown in Fig. 3).
It is important to notice that this choice contributes for storage-savings but it increases
communication overhead.

3.4. Parallel Implicit Restart(Step4.d)

After each iteration, the matrixSk increases its dimension by one row and column,
causing the computation of eigenvalues in the subspace to increase its cost. An implicit
restart scheme is used to periodically reduce the dimension ofSk. Recall the orthogonal
decomposition ofSk:

3k = YT
k SkYk. (12)

Let q be a fixed restart index, andm the minimal dimension for the projected matrixSk.
Sincem> p, the desired eigenvalue approximations are contained on the firstm entries of
3k. If dimension ofSk exceeds the valuem+ q, one can drop theq largest eigenvalues.
This can be done by splitting

3k =
[
3k,1 0

0 3k,2

]
andYk= [Yk,1,Yk,2] where3k,1 andYk,1 correspond to them smallest eigenpairs. (Remem-
ber that3k andYk are already sorted, as specified in the previous paragraph.) ProjectingSk

over the space spanned by itsm smallest eigenvectors, we obtain them×m reduced matrix

S(+)k = YT
k,1SkYk,1 = 3k,1. (13)

738 BORGES AND OLIVEIRA

Thus, a particular computation occurs during a restarted iteration. Since relationSk=
VT

k AVk must be preserved forS(+)k , decomposition (12) imposes

3k,1 = (VkYk,1)
T AVkYk,1,

which corresponds to updateV (+)
k =VkYk,1 and consequentlyW(+)

k =WkYk,1. Also, Eq. (13)
claims that the new eigenvectors ofS(+)k are canonical vectors. It reduces relation (5) to
Yk= Qk when performed right after a restarted iteration. It is important to note that ifYk,1

is not orthonormal the updateV (+)
k =VkYk,1 may compromise the condition thatV (+)

k must
be an orthonormal basis. Loss of orthogonality may happen due to roundoff errors in Eqs.
(9) and (10). To avoid such a problem the modified Gram–Schmidt method is applied to
Yk,1 before computingV (+)

k andW(+)
k .

A restarted iteration requires one more group of updates:Vk←VkYk,1 andWk←WkYk,1.
Thus, each processori may discard the lastq columns ofYk because the number of columns
is reduced fromm+q to m, and compute the updatesVi

k←Vi
k Yk,1 andWi

k←Wi
kYk,1.

ALGORITHM 3. Parallel Implicit Restart. Given the set of eigenvalues3k and eigenvec-
torsYk and the associated matricesVk andWk, check for restart.

1. If (m+ q)≤ dim S (dimension of3k)
3k← (3k)(m×m).
OrthonormalizeYk,1 = first m columns ofYk.
For all nodesi, i ∈ {1, . . . , N}

Vi
k←Vi

k Yk,1.
Wi

k←Wi
kYk,1.

dim S←m.
2. Stop.

4. TIMING ANALYSIS FOR THE PARALLEL ALGORITHM

All the pieces presented above can be integrated to form the complete parallel version
for the DSE algorithm (Algorithm 4 shown below). Next, estimates for computational and
communication timings are presented.

ALGORITHM 4. Parallel Restarted Davidson for Several Eigenvalues. Given a matrix
A, an initial vectorx1, iteration limitη, number of eigenpairsp, restart indexesq anm, and
convergence toleranceε, compute approximationsλ andu for the p smallest eigenpairs
of A. N indicates the number of processors being used.

1. Setv1← x1/‖x1‖2. (initial guess)
2. For all nodesi, i ∈ {1, . . . , N}

Vi
1← [vi

1];Wi
0← [] ;Y0← [].

3.30← [] ; dim S← 0.
4. For j = 1, . . . , p do (approximation forj th eigenpair)

Fork= 1, . . . , η do
(a) Broadcastvk.
(b) For all nodesi, i ∈ {1, . . . , N}

Receivevk.
Computewi

k= Ai vk and updateWi
k = [Wi

k−1, w
i
k].

Computesi
k= (Vi

k−1)
Twi

k and send to the host.

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 739

(c) Computesk=
∑N

i=1 si
k in the host and use Algorithm 2 to obtain

the eigendecomposition3k andYk. Update dimS← dim S+ 1.
(d) Use Algorithm 3 to check and apply restart when it is necessary.
(e) Broadcast thel th smallest eigenpairλk, yk from3k andYk,

wherel = min(dim S, j).
(f) For all nodesi, i ∈ {1, . . . , N}

Receiveyk, andλk.
Computer i

k=Wi
k yk − λVi

k yk.
(g) Broadcastrk by appending allr i

k. (residual vector)
(h) If ‖rk‖2<ε then exit inner loop.
(i) tk←Mrk. (preconditioning)
(j) Send slicet i

k to nodei, i ∈ {1, . . . , N}.
(k) vk+1← pmgs(Vk, tk). (parallel modified Gram–Schmidt).

5. Stop.

The DSE algorithm performs matrix multiplies at various times, e.g., the computation of
wk= Avk andtk=Mrk; this is the most time consuming step of the algorithm. However,
we do not include these operations in our theoretical operation count because the structure
of matrix A changes for different problems. Nevertheless, in our numerical experiments
the timings shown include these matrix vector multiplications. Also, in our implementa-
tions we resort to BLAS, which is an efficient matrix library and is optimized for each
computer.

For the operation count, one iteration of the algorithm was divided into four major tasks:
(1) residual calculation; (2) arrowhead-eigendecomposition; (3) implicit restart(when ap-
plicable); and (4)modified Gram–Schmidt orthonormalization. The residual calculation
r i

k=Wi
k yk − λkVi

k yk depends on the orderk of Vk and Wk. Eachr i
k is obtained with

4kn/N flops. The arrowhead-eigendecomposition employs three sub-steps, namely, the
matrix multiplicationsi

k= (Vi
k−1)

Twi
k, eigenvalue-eigenvector computations, and updating

Yk=Yk−1Q̃k. The first two sub-steps are accomplished in 2kn/N andck2 flops, respectively,
for some constantc. The last sub-step can be understood ask matrix-vector multiplications
distributed acrossN processors, which leads to 2k3/N flops. Implicit restart occurs sporad-
ically and proceeds the updatingVi

k =Vi
k Yk,1 andWi

k =Wi
kYk,1 in 4kmn/N flops. Finally,

the mgs orthonormalization requires 2kn/N flops. The resulting lower-bound for the com-
putational timeTcp(k) spent in one iteration, excluding the restart operations, is determined
by adding all the above float point operations:

Tcp(k) = 2

N
k3+ ck2+ 8

n

N
k.

Such estimate reflects time dependencies on the order of the problem(n), the number of
processors used(N), and the current dimension (k) of the subspaceSk. Given the total num-
ber of iterations (s) taken by the DSE algorithm to converge, the global computational time
can be estimated, for both non-restarted and restarted cases. First consider the case where no
restart (nr) was applied. In this case, the dimensionk of the subspace successively increases
and the resulting timeTcp

nr (s) is a straightforward summation of the times for each iteration

Tcp
nr (s) =

s∑
k=1

Tcp(k) = 2

N

s∑
k=1

k3+ c
s∑

k=1

k2+ 8
n

N

s∑
k=1

k

= s4

2N
+
(

c

3
+ 1

N

)
s3+

(
4

n

N
+ c

2
+ 1

2N

)
s2+

(
4

n

N
+ c

6

)
s.

740 BORGES AND OLIVEIRA

Notice that updatesYk=Yk−1Q̃k produce the higher order term ins. It demonstrates the
overall effect of growing matricesYk. The restart parameterq imposes the upper bound
(m + q) for the order ofYk. To develop an estimate for the restarted case, we need to
understand the behavior of dimensionk. At the beginning, dimensionk grows from 1
to m+q. After the first restart,k is reduced tom and begins to grow again, ranging fromm
to m+ q, until the next restart is applied. So, the number of restarts, excluding the first, is
an integer division byq. More precisely, the total number of restarts fors iterations is given
by 1+ b s−(m+q)

q c= b s−m
q c. And the number of remaining iterations after the last restart is

δ= (s−m− q)modq. Notice that the case with restarts can be written in terms of times
without restarts,Tcp

nr , by adding the time spent before the first restart, the time from the first
restart until the last restart, the remaining time after the last restart, and all the extra times
due to restarts. Thus the total computational timeTcp

r (s) using restarts is given by

Tcp
r (s) = Tcp

nr (m+ q)+
(⌊

s−m

q

⌋
− 1

)(
Tcp

nr (m+ q)− Tcp
nr (m− 1)

)
+ (Tcp

nr (m− 1+ δ)− Tcp
nr (m− 1)

)+ ⌊s−m

q

⌋
τ cp

r

=
⌊

s−m

q

⌋(
Tcp

nr (m+ q)− Tcp
nr (m− 1)+ τ cp

r

)
+ Tcp

nr (m+ δ − 1), (14)

whereτ cp
r represents the extra computational work performed on each restart step. We can

derive an upper-bound by noticing thatδ <q

Tcp
r (s)≤

s−m

q

(
Tcp

nr (m+ q)− Tcp
nr (m− 1)+ τ cp

r

)+ Tcp
nr (m+ q).

A restarted iteration applies modified Gram–Schmidt toYk,1 in (m+q)(2m2+m)− 1
2(m

2−
m) flops, and performs the updatesVi

k =Vi
k Yk,1 andWi

k =Wi
kYk,1 in 4m n

N (m+ q) flops.
By recalling that the updateYk=Yk−1Q̃k in (5) does not occur after a restarted iteration,
we obtain

τ cp
r = 4m

n

N
(m+ q)+ (m+ q)(2m2+m)− 1

2
(m2−m)− 2

m3

N

= 2(m+ q)

(
4m

n

N
+ 2m2+m

)
− 2

m3

N
− 1

2
(m2−m).

For the communication timing, considerts as the message startup time andtw the per-word
transfer time. We assume three distinct communication operations and their theoretical time
estimates in a mesh architecture [23].One-to-onecommunication is performed by sending a
message from one processor to another; it takes timets+ltw for a message of sizel . This op-
eration is presented in the arrowhead solver where the host sends specific messages to each
processor. For an iteration step of DSE, it takes timek(ts+2tw) for the host to distribute the
k intervals(dj−1, dj) across all processors and timek(ts+ ktw) to receive thek associated
eigenvectors, each one of sizek. One-to-allbroadcast is characterized by a single processor
sending the same message to all other processors. It takes time(ts + ltw) log N and is also
related with the arrowhead solver: functionϕ(·) is transferred from host to all processors

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 741

as a vector of size 2k which takes time(ts + 2ktw) log N; Matrix Yk has orderk and costs
(ts + k2tw) log N to be broadcasted.All-to-all broadcast,reduction, anddata gathering
belong to the most expensive class of communication taking time(ts+ ltw)(N − 1) for a
message of sizel . These operations employ communications where all processors broadcast
different data to be added (reduction operation) or grouped (gathering operation) into one
single processor. In one iteration of the algorithm reduction is performed when computing
sk=

∑N
i=1 si

k by using a reduction operation forN arrays of sizek each; when computing
the norm‖rk‖2=

∑N
i=1 ‖r i

k‖2 by a reduction ofN arrays of size 1 each; and when apply-
ing mgs which employsk reductions forN arrays of size 1 each for the inner products.
The above operations are accomplished with times(ts+ ktw)(N− 1), (ts+ tw)(N− 1), and
k(ts + tw)(N − 1), respectively. Data gathering is applied to concatenate the eigenvector
approximationyk and the new vectorvk+1. The associated timings are based on the re-
spective sizes:(ts+ ktw)(N − 1) and(ts+ n

N tw)(N − 1). Notice that there is no particular
communication during a restarted iteration. Combining the estimates given above, we obtain
the communication timeTcm(k) for one iteration

Tcm(k) = [k(1+ N)+ 2(log N + 2N − 2)]ts +
[
k2(1+ log N)

+ k(3N + 2 logN− 1)+
(

n

N
+ 1

)
(N − 1)

]
tw.

Similarly to the computational timing analysis, we deduce the timeTcm
nr (s) spent ons

iterations of the non-restarted algorithm as

Tcm
nr (s) =

s∑
k=1

Tcm(k) =
[
(1+ N)

s∑
k=1

k+ 2(log N + 2N − 2)
s∑

k=1

1

]
ts

+
[
(1+ log N)

s∑
k=1

k2+ (3N + 2 logN− 1)
s∑

k=1

k+
(

n

N
+ 1

)
(N − 1)

s∑
k=1

1

]
tw

= 1

3
(1+ log N)tws3+

[
1

2
(1+ N)ts + 3

2
(log N + N)tw

]
s2

+
[(

2 logN + 9

2
N − 7

2

)
ts +

(
5

2
N + 7

6
log N − 4

3
+ n

(
1− 1

N

))
tw

]
s,

and the communication timeTcm
R (s) for the restarted version as

Tcm
r (s) =

⌊
s−m

q

⌋(
Tcm

nr (m+ q)− Tcm
nr (m− 1)

)+ Tcm
nr (m+ δ − 1). (15)

Whenδ <q we can also derive an upper bound for the total restarted time as

Tcm
r (s)≤ s−m

q

(
Tcm

nr (m+ q)− Tcm
nr (m− 1)

)+ Tcm
nr (m+ q).

5. NUMERICAL RESULTS

The parallel code for DSE was written in C. To achieve portability, we used MPI [15, 18]
for the communication standard. The Message Passing Interface (MPI) is a set of standards

742 BORGES AND OLIVEIRA

which describes the user interface for a message passing library. It provides a large set of
functions which controls point to point and collective communication. The application can
either migrate to a different implementation of MPI or a different computer just by recom-
piling the code. Also, level 1, 2, and 3 BLAS routines [14] were employed. Currently many
computer vendors provide optimized BLAS libraries which achieve a good performance
for vector and matrix computations.

Our computational results were obtained for the coefficient matrix which arises from
using a finite difference (based on a 5 point stencil) method for solving the problem

−1u+ gu= f (16)

on a unitary square domain. Considerg to be null inside a 0.2× 0.2 square on the center of
the rectangle andg= 100 for the rest of the domain. Algorithm 4 was used for finding the
ten smallest eigenpairs (p= 10) and assumed convergence for residual norms less than or
equal to 10−7(ε= 10−7). The restart indexes wereq= 10 andm= 15. (This corresponds
to apply restarting every time that the projected matrixSk achieves order 25, reducing its
order to 15.)

For the numerical results, we used a diagonal preconditioner as in the original Davidson
algorithm, an ADI preconditioner, and a multigrid preconditioner [30]. The ADI precon-
ditioner can be derived by considering a splitting of the matrix into two parts. In terms of
differential equations this corresponds to solving the linear system, first in relation to one
direction and then in the other direction. An acceleration parameter in a fashion similar to
the SOR method can be incorporated. Details of these methods are shown in [38, 40, 41].

The multigrid solver is a well established iterative method for solving the systems aris-
ing from discretizations of partial differential equations. In contrast with classical iterative
methods (Jacobi, Gauss–Seidel, SOR, or SSOR with Chebyshev acceleration) the conver-
gence rate of multigrid methods does not slow down as the size of the problems increase
[12]; in other words, for a given accuracy, it can solve problems inn unknowns inO(n)
time. A good introduction for multigrid algorithms is given in [6].

For the calculation of eigenvalues ofSk, through Eq. (8), we followed [28] but used
Brent’s root finder [5] instead of bisection and secant methods.

Figure 4 compares estimates developed in Section 4 with the actual running timings
for two distinct grid sizes: 63× 63 and 127× 127 (matrices of orders 3969 and 16129,
respectively.). Each problem was solved using 4, 8, 12, 16, 20, and 24 processors on the
Intel Paragon computer and the observed running timings3 were plotted. Thus, the two values
of s (number of iterations), for the two different matrices sizes were used in Eqs. (14) and
(15) and then the estimated timings in Fig. 4 were derived.

Since the timing analysis only considers the major communication and computational
efforts, the timing estimates are expected to be smaller than the actual algorithm timings.
This can be demonstrated in Fig. 4. Nevertheless it can describe the behavior and perfor-
mance as the number of processors increases. The model proved to be very satisfactory in
detecting potential bottlenecks prior to coding the algorithm.

As MPI and BLAS libraries were available in both platforms, migration between the
Intel Paragon and nCUBE is straightforward. Optimized BLAS is available on Paragon’s
operating system [20]. A Fortran implementation of BLAS from Netlib [14] was compiled

3 Running times refer to the DSE algorithm excluding the time spent applying the preconditionerM .

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 743

FIG. 4. Actual and estimated times for Eq. (16). Results for two different matrix sizes performance on the
Paragon are shown.

on the nCUBE. Table 1 compares actual running times in seconds for our test case on
both computers. The different curves are due to different granularities. Also after a certain
number of processors is reached, each curve rises away from its minimum point; this is due
to increased interprocessor communication overhead. Our theoretical model predicts the
optimal number of processors associated for each granularity.

The numberN of processors for which the total parallel running timeTr = Tcp
r + Tcm

r

achieves its minimum is determined by∂Tr (N)
∂N = 0. This equation provides an upper-bound

for the number of processors to be allocated on a given problem. As the number of processors

TABLE 1

Timings in Seconds for Problem (16) in the nCUBE and Paragon Computers

Matrix order 961 (31× 31) Matrix order 3969(63× 63)
Order 16129

Processors Paragon nCUBE Paragon nCUBE Paragon

4 6.4 13 11 52 22
8 4.5 11 7.3 33 14

16 4.5 11 7.1 27 11
20 4.7 ∗1 7.1 ∗1 11
24 4.9 ∗1 7.2 ∗1 11

∗1 Not a subcube size.

744 BORGES AND OLIVEIRA

exceeds the upper-bound, either the parallel run time stays asymptotically at minimal value,
or rises away from the it. Equations (14) and (15) were differentiated4 in relation to N
resulting in a function depending on 1/N2. The positive root indicates that the maximum
number of processors to be allocated isN= 5 for a matrix of order 961,N= 10 for order
3969, andN= 20 for a matrix order of 16129. The data in Fig. 4 and Table 1 show that our
timings for the mesh architecture (Paragon in our case) followed the theoretical estimates.

Preconditioning is another relevant issue concerning, performance [30]. Figure 5 com-
pares the convergence history of the residual norm for the first five eigenpairs for a matrix
of order 3969. Here convergence was estimated usingε= 10−5. The restart indexes were
q= 10 andm= 15. For the numerical results in Fig. 5(a), a diagonal preconditioner was
applied, that is,M = (D− λI)−1 whereD is the main diagonal ofA, the matrix discretiza-
tion for (16). At first, one may think that the points of sudden increase in the residual are a
consequence of restart steps. However, the multigrid preconditioner does not present such a
problem (Fig. 5(b)). Moreover, with the multigrid preconditioner DSE finds all five eigen-
values after 39 iterations while the diagonal version requires 358 iterations. The variations
in Fig. 5(a) are due to the poor performance provided by a diagonal preconditioner. Indeed,
each eigenvector approximation is obtained by preconditioning the residual of the current
approximate solution. Although the eigenvalue approximationλk converges monotonically
to the actual eigenvalue, the preconditioner may worsen the angle between successive eigen-
vectorsvk, and span(Vk). It can also worsen the convergence rate by reducing the accuracy
of the approximate eigenvectors. Moreover, the diagonal preconditioner may induce the
lock in phenomena; that is, the algorithm will converge to eigenvalueλ defined by the cur-
rent matrix(D − λI)−1 instead of the actualpth eigenvalue. Consequently, the algorithm
can attribute wrong multiplicity to the eigenvalues. In our example, the second eigenvalue
is repeated, but the DSE algorithm with preconditioner(D − λI)−1 does not demonstrate
the eigenvalue multiplicity of two. Our last figure illustrates numerical results with an ADI
preconditioner. For our test cases, we obtained the best results with this preconditioner.
Figure 6 compares our timings against PARPACK [26]. PARPACK is a parallel package
available for the calculation of several eigenvalues based on the Arnoldi method. For the
cases studied, our timings are always competitive with PARPACK and significantly better
for increased problem size.

6. CONCLUSIONS

Recently, progress has been made in the use of Generalized Davidson algorithms for
finding several eigenvalues [30]. In this paper we describe the a Davidson for Several
Eigenvalues (DSE) algorithm, and develop its parallelization. The main improvement of
this paper is the way the eigenvalues are calculated for the subspaces. The relationship
between the consecutive subspaces allowed us to develop a highly parallel step for this
part of Davidson-type algorithms, particularly DSE. The greatest part of the computational
work consists of matrix vector multiplies. For the parallel implementation, row partitioning
of data was used; BLAS and the MPI library were incorporated. Other parts of the code,
additional to matrix vector multiplies, generated the timing model and predicted the general

4 Notice the above calculations still depend on the parameters, the number of iterations performed by the DSE
algorithm. Further analysis may provide a prior upper bound fors dependent on the kind of matrix studied, so that
the timing model can be applied as a tool when deciding the number of processors to be allocated.

FIG. 5. Residual norms for the first five eigenpairs for an 63× 63 discretization of Eq. (16). Case (a), diagonal
preconditioner. Case (b), multigrid preconditioner.

746 BORGES AND OLIVEIRA

FIG. 6. Comparison with PARPACK.

behavior well. From the numerical results, when multigrid is used instead of the diagonal
preconditioner (as in the Davidson algorithm) we showed that the number of iterations is
significantly decreased. Even better results were obtained with an ADI preconditioner. Our
implementation is portable, and numerical results were compared between the the nCUBE
and Paragon, with better results on the latter. Finally, our code is competitive with PARPACK
and better in some cases.

APPENDIX: STABILIZING THE EIGENVECTOR CALCULATION

The DSE algorithm employs the arrowhead-decomposition iteratively. Using the arrow-
head representation, the firstp columns ofVk−1 approach eigenvectors ofA. Thus the
corresponding entries of̃sk approach zero. Such behavior may produce roundoff errors
on the eigenvector calculation: as thej th diagonal entrydj converges to thej th eigen-
value λ̄ j of the original problem, the eigenvalue approximationλ j also converges tōλ j .
Consequently, the ratiou= s̃k(j)/(λ j − dj) presented in the eigenvector calculation (9),
will operate ons̃k(j)→ 0 andλ j − dj → 0 which may result in a wrong estimate for one
entry of the eigenvectorql . To overcome this we avoid evaluating ratiou explicitly. Instead,
the identityϕ(λ j)= 0 can be used to obtainu in (9). From (8) we have

−dj = ϕ(λ j)− dj ⇒ λ j − dj = skk − dj + [s̃k(j)]2

λ j − dj
+

k̄−1∑
l=1
l 6= j

[s̃k(l)]2

λ j − dl
,

PARALLEL ALGORITHM FOR SEVERAL EIGENVALUES 747

which is divided bys̃k(j) 6= 0, leading to

u2+ αu− 1= 0, α =
skk − dj +

∑k̄−1
l=1
l 6= j
([s̃k(l)]2/(λ j − dl))

s̃k(j)
.

Thusu= (−α ± √α2+ 4)/2, where the choice of the positive or negative root is made
according to the sign of̃sk(j)/(λ j − dj).

ACKNOWLEDGMENTS

The authors thank the reviewers and editors of this journal for a number of suggestions which have improved
the presentation of this work.

REFERENCES

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen,LAPACK User’s Guide(SIAM, Philadelphia, 1992).

2. H. Bateman, On a set of kernels whose determinants form a sturmian sequence,Bull. Amer. Math. Soc.18,
179 (1912).

3. N. Becker, Note on the parallel efficiency of the Frederickson–McBryan multigrid algorithm,SIAM J. Sci.
Stat. Comput.12, 208 (1991).

4. L. Borges,New Parallel Algorithms for Eigenvalue Problems, Ph.D. thesis, Texas A&M University, 1998.

5. R. P. Brent,Algorithms for Minimization without Derivatives(Prentice Hall, Englewood Cliffs, NJ, 1973).

6. W. L. Briggs,A Multigrid Tutorial (SIAM, Philadelphia, 1987).

7. D. Calvetti, L. Reichel, and D. Sorenson, An implicitly restarted Lanczos method for large symmetric eigen-
value problems,Electronic Trans. Numer. Anal.2, 1 (1994).

8. G. Cisneros, M. Berrondo, and C. F. Brunge, DVDSON: A subroutine to evaluate selected sets of eigenvalues
and eigenvectors of large symmetric matrices,Comput. Chem.10, 281 (1986).

9. G. Cisneros and C. F. Brunge, An improved computer program for eigenvector and eigenvalues of large
configuration iteraction matrices using the algorithm of Davidson,Comput. Chem.8, 157 (1984).

10. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors
of large real-symmetric matrices,J. Comput. Phys.17, 87 (1975).

11. E. R. Davidson, Super matrix methods,J. Comput. Phys. Comm.53, 49 (1989).

12. J. W. Demmel,Applied Numerical Linear Algebra(SIAM, Philadelphia, 1997).

13. R. V. der Wijngaart, Efficient implementation of a 3-dimensional ADI method on the iPSC/860, inSupercom-
puting’93(IEEE Computer Society Press, Los Almitos, CA, 1993), p. 102.

14. J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff, A set of level 3 basic linear algebra subprograms,ACM
Trans. Math. Soft.16, 1 (1990).

15. J. J. Dongarra, S. W. Otto, and D. W. M. Snir, A message passing standard for MPP and workstations,Comm.
ACM39, 84 (1996).

16. P. Frederickson and O. McBryan, Normalized convergence rates for the PSMG method,SIAM J. Sci. Stat.
Comput.12, 221 (1991).

17. G. Golub and C. Van Loan,Matrix Computations(Johns Hopkins Press, Baltimore, 1989), 2nd ed.

18. W. Gropp, E. Lusk, and A. Skjellum,Using MPI: Portable Parallel Programming with the Message-Passing
Interface(MIT Press, Cambridge, MA, 1994).

19. K. Hwang,Advanced Computer Architecture: Parallelism, Scalability, Programmability(McGraw–Hill,
New York, 1993).

20. Intel Corporation,Paragon System User’s Guide(1995).

748 BORGES AND OLIVEIRA

21. H. Jiang and Y. Wong, A parallel alternating direction implicit preconditioning method,J. Comput. Appl.
Math.36, 209 (1991).

22. D. Kincaid and W. Cheney,Numerical Analysis(Brooks/Cole, 1990).

23. V. Kumar, A. Grama, A. Gupta, and G. Karypis,Introduction to Parallel Computing(Benjamin–Cummings,
Redwood City, CA, 1994).

24. P. Leca and L. Mane, A 3-D ADI algorithm on distributed memory multiprocessors implementations and
results, inParallel Computational Fluid Dynamics, edited by H. Simon (MIT Press, Cambridge, MA, 1992),
p. 149.

25. T. Manteuffel, S. McCormick, J. Morel, S. Oliveira, and G. Yang, A parallel version of a multigrid algorithm
for isotropic transport equations,SIAM J. Sci. Comput.15, 474 (1994).

26. K. Maschhoff and D. Sorensen, A portable implementation of ARPACK for distributed memory parallel
architectures, inProceedings of Copper Mountain Conference on Iterative Methods, April 9–13, 1996.

27. C. W. Murray, S. C. Racine, and E. R. Davidson, Improved algorithms for the lowest few eigenvalues and
associated eigenvectors of large matrices,J. Comput. Phys.103, 382 (1991).

28. D. P. O’Leary and G. W. Stewart, Computing the eigenvalues and eigenvectors of symmetric arrowhead
matrices,J. Comput. Phys.90, 497 (1990).

29. D. P. O’Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram–Schmidt
algorithms,Parallel Computing16, 99 (1990).

30. S. Oliveira, A convergence proof of an iterative subspace method for eigenvalues problem, inFounda-
tions of Computational Mathematics Selected Papers, edited by F. Cucker and M. Shub (Springer-Verlag,
New York/Berlin, 1997), p. 316.

31. S. Oliveira, A new parallel chasing algorithm for transforming arrowhead matrices to tridiagonal form,Math.
Comput.67, 221 (1998).

32. B. N. Parlett,The Symmetric Eigenvalue Problem(Prentice Hall, Englewood Cliffs, NJ, 1980).

33. Y. Saad,Numerical Methods for Large Eigenvalue Problems(Halsted, New York, 1992).

34. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler,Matrix
Eigensystem Routines: EISPACK Guide, in Lecture Notes Comput. Sci. (Springer-Verlag, Berlin/Heidelberg/
New York, 1976), 2nd ed., No. 6.

35. A. Stathopoulos and C. F. Fischer, Reducing synchronization on the parallel davidson method for the large,
sparse, eigenvalue problem, inProceedings of Supercomputing Conference, 1993, p. 172.

36. A. Stathopoulos and C. F. Fischer, A Davidson program for finding a few selected extreme eigeinpairs of a
large, sparse, real, symmetric matrix,Comput. Phys. Comm.79, 268 (1994).

37. V. M. Umar and C. F. Fischer, Multitasking the Davidson algorithm for the large, sparse eigenvalue problem,
Int. J. Supercomput. Appl.3, 28 (1989).

38. R. S. Varga,Matrix Iterative Analysis(Prentice Hall, Englewood Cliffs, NJ, 1963).

39. J. Weber, R. Lacroix, and G. Wanner, The eigenvalue problem in configuration iteration calculations: A
computer program based on a new derivation of the algorithm of Davidson,Comput. Chem.4, 55 (1980).

40. J. R. Westlake,A Handbook of Numerical Matrix Inversion and Solution of Linear Equations(Wiley,
New York, 1968).

41. D. M. Young,Iterative Solution of Large Linear Systems(Academic Press, San Diego, 1971).

